Penjelasan TA Bidang Minat Data Sains

RUBRIK PENILAIAN BiDANG MINAT DATA SAINS

Rubrik penilaian terhadap Tugas Akhir Bidang Minat Data Sains yang berfungsi untuk menilai kualitas akademik dan vailiditas yang dilakukan oleh mahasiswa. Rubrik penilaian ini dirancang untuk memberikan panduan yang komprehensif dan objektif dalam mengevaluasi Tugas Akhir yang berfokus pada penerapan proses Knowledge Discovery in Databases (KDD). Rubrik ini mempertimbangkan berbagai aspek penting dari penulisan Tugas Akhir, penerapan metode KDD, kedalaman penelitian, serta presentasi dengan format yang telah disesuaikan dengan kurikulum Data Science dari ACM Curricula.

  1. Tujuan

    Tujuan utama dari rubrik penilaian ini adalah untuk:
    1. Menilai Kualitas Penulisan : Memastikan bahwa Tugas Akhir Data Science ditulis dengan jelas, koheren, dan menggunakan tata bahasa serta sintaksis yang benar, serta mengikuti gaya akademik yang tepat
    2. Mengukur Penerapan Proses KDD : Menilai sejauh mana mahasiswa memahami dan menerapkan setiap langkah dalam proses KDD, termasuk pemilihan data, pembersihan data, transformasi data, rekayasa fitur, pemilihan model dan algoritma, serta evaluasi dan validasi model
    3. Mengukur Kedalaman Penelitian: Mengevaluasi kedalaman literatur yang diulas, relevansi teoritis, identifikasi celah penelitian, dan analisis state-of-the-art yang dilakukan oleh mahasiswa.
    4. Menilai Presentasi : Menilai kualitas presentasi dan pemformatan tesis, termasuk halaman judul, abstrak, daftar isi, serta kualitas visualisasi data seperti tabel dan gambar.
  2. Kompetensi Dasar 

    Rubrik penilaian penelitian adalah alat yang berguna untuk mengevaluasi kinerja mahasiswa dalam penelitian Data Science. Rubrik ini dibangun menggunakan pedoman kurikulum komputasi ACM dan dirancang untuk menilai pencapaian mahasiswa di berbagai bidang penelitian, termasuk pemahaman dan pemilihan data, prapemrosesan dan transformasi data, rekayasa fitur, pemodelan dan evaluasi, serta interpretasi dan presentasi hasil. Rubrik ini disusun berdasarkan proses Knowledge Discovery in Databases (KDD), yang membantu menyelaraskan tujuan pembelajaran dengan langkah-langkah yang diperlukan dalam proses KDD. Dengan menggunakan rubrik ini, instruktur dapat mengevaluasi kemajuan mahasiswa dan memberikan umpan balik untuk membantu mahasiswa meningkatkan keterampilan dan pengetahuan mereka dalam Data Science.
  3. Kompetensi Data Sains

    1. Mahasiswa mampu mengidentifikasi dan mendokumentasikan sumber data yang relevan dengan menerapkan teknik pengumpulan data yang dikenal, berinteraksi dengan para pemangku kepentingan, dan menggunakan keterampilan fasilitasi, baik sebagai individu maupun anggota tim data yang berkontribusi.

    2. Mahasiswa mampu menganalisis data untuk konsistensi, kelengkapan, dan kelayakan, serta merekomendasikan teknik pembersihan dan prapemrosesan data yang lebih baik, baik sebagai individu maupun anggota tim data yang berkontribusi.

    3. Mahasiswa mampu melakukan transformasi dan rekayasa fitur data menggunakan format dan bahasa standar yang telah dipilih untuk proyek dan mampu menjelaskan proses tersebut dengan cara yang dapat dipahami oleh non-ahli, baik sebagai individu maupun anggota tim data yang berkontribusi.

    4. Mahasiswa mampu membangun, mengevaluasi, dan memvalidasi model menggunakan teknik standar, termasuk inspeksi, pemodelan, pengujian, dan validasi dengan cara yang dapat dipahami oleh non-ahli, baik sebagai individu maupun anggota tim data yang berkontribusi.

    5. Mahasiswa mampu menerapkan manajemen proses dan hasil data yang telah diidentifikasi untuk proyek dengan cara yang dapat dipahami oleh non-ahli, baik sebagai individu maupun anggota tim data yang berkontribusi.

  4. Rubrik Penilaian

1.Writing Quality

Sub-Category 1-Poor 2-Fair 3-Good 4-Very Good 5-Excellent

Clarity and Coherence

Text is unclear, poorly organized. Text is somewhat unclear, partially organized. Text is generally clear, reasonably organized. Text is clear, well-organized. Text is exceptionally clear, coherent, and well-organized.
Grammar and Syntax Numerous errors in grammar and syntax. Several errors in grammar and syntax. Some errors in grammar and syntax. Few errors in grammar and syntax. Virtually no errors in grammar and syntax.
Academic Tone and Style Tone is inappropriate, lacks academic style. Tone is occasionally inappropriate, weak academic style. Generally appropriate tone, reasonable academic style. Consistent appropriate tone, strong academic style. Exceptionally appropriate tone, professional academic style.
Citation and References Citations and references are poorly formatted. Citations and references are inconsistently formatted. Citations and references are generally correct. Citations and references are mostly correct. Citations and references are perfectly formatted.

 

2. KDD Process Application

Sub-Category 1-Poor 2-Fair 3-Good 4-Very Good 5-Excellent
Data Understanding and Selection Inadequate data sources, unclear criteria. Limited data sources, weak criteria. Adequate data sources, reasonable criteria. Good data sources, strong criteria. Excellent data sources, rigorous criteria.
Data Cleaning and Preprocessing Insufficient cleaning, preprocessing. Limited cleaning, weak preprocessing. Adequate cleaning, reasonable preprocessing. Thorough cleaning, strong preprocessing. Exceptional cleaning, rigorous preprocessing.
Data Transformation and Integration Inadequate transformation, poor integration. Limited transformation, weak integration. Adequate transformation, reasonable integration. Good transformation, strong integration. Excellent transformation, rigorous integration.
Feature Engineering Poor feature selection, creation. Limited feature selection, weak creation. Adequate feature selection, reasonable creation. Good feature selection, strong creation. Excellent feature selection, innovative creation.
Modeling and Algorithm Selection Inadequate model selection, weak algorithms. Limited model selection, weak algorithms. Adequate model selection, reasonable algorithms. Good model selection, strong algorithms. Excellent model selection, advanced algorithms.
Model Evaluation and Validation Poor evaluation, weak validation. Limited evaluation, weak validation. Adequate evaluation, reasonable validation. Thorough evaluation, strong validation. Exceptional evaluation, rigorous validation.
Interpretation and Knowledge Presentation Poor interpretation, weak presentation. Limited interpretation, weak presentation. Adequate interpretation, reasonable presentation. Good interpretation, strong presentation. Excellent interpretation, insightful presentation.

 

3. Research Depth

Sub-Category 1-Poor 2-Fair 3-Good 4-Fery Good 5-Excellent
Literature Review and Contextualization Incomplete review, little relevance. Limited review, some relevance. Adequate review, reasonable relevance. Comprehensive review, strong relevance. Exhaustive review, exceptional relevance.
Theoretical Framework and Foundations Poor understanding, application. Limited understanding, weak application. Adequate understanding, reasonable application. Good understanding, strong application. Exceptional understanding, rigorous application.
Identification of Research Gaps No identification of gaps. Weak identification of gaps. Adequate identification of gaps. Good identification of gaps. Excellent identification of gaps.
State-of-the-Art Analysis Poor understanding of current trends. Limited understanding of trends. Adequate understanding of trends. Good understanding of trends. Exceptional understanding of trends.
Formulation of Research Questions Unclear, irrelevant questions. Somewhat clear, partially relevant questions. Generally clear, relevant questions. Clear, relevant questions. Exceptionally clear, highly relevant questions.

 

4. Presentation and Formating

Sub-Category 1-Poor 2-Fair 3-Good 4-Very Good 5-Excellent
Title Page and Abstract Incomplete, poorly presented. Somewhat complete, poorly presented. Adequate, reasonably presented. Complete, well-presented. Exceptionally complete, professionally presented.
Table of Contents and Lists Incomplete, poorly formatted. Somewhat complete, inconsistently formatted. Adequate, reasonably formatted. Complete, well-formatted. Exceptionally complete, professionally formatted.
Figures, Tables, and Visualizations Poor quality, irrelevant. Somewhat relevant, low quality. Relevant, reasonable quality. Highly relevant, good quality. Exceptionally relevant, high quality.
Overall Layout and Formatting Disorganized, inconsistent. Somewhat organized, inconsistent. Generally organized, consistent. Well-organized, mostly consistent. Exceptionally organized, consistently professional.

 

5. Total Score Calculation

To calculate the total score, sum the points from each subcategory. The maximum score is 140 (28 subcategories, each rated from 1 to 5). This total score can then be converted into a percentage or grade as needed.